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Experiments that investigate the pattern of degradation of pest control substances in soil are often
undertaken to estimate the persistence of compounds in the environment. Mathematical models are
typically fit to decay data to facilitate the interpretation of the results and make predictions concerning
the environmental fate of xenobiotics in soil. Four mathematical models were fit to 61 data sets to
compare their performance in conforming to empirical patterns of degradation of pest control
substances in soil. The use of composite residual plots allowed comparisons of the performance of
the different models over many data sets. While an exponential model, estimated using nonlinear
regression, fit many data sets very well, a shift-log, biexponential, and Monod equation appears
superior in many cases, and systematic deviations from data sets are often less evident with the
latter models. A knowledge of the patterns of bias typically exhibited by each model across many
data sets may be useful for selecting models with reduced bias when fitting individual data sets.
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INTRODUCTION

Experiments that investigate the pattern of degradation of pest
control substances in soil are often undertaken to estimate the
persistence of compounds in the environment. Mathematical
models are typically fit to decay data to facilitate the interpreta-
tion of the results and make predictions concerning the
environmental fate of xenobiotics in soil. Models are generally
selected based on mechanistic hypotheses or empirical fit to a
data set. Common models include zero-order (linear) and
pseudo-first-order (exponential) equations. Zero-order relation-
ships are characterized by a constant rate of decay over the
observation period, independent of the substrate concentration.

Exponential relationships exhibit a decay rate that decreases
in proportion to the amount of substrate remaining. When
exponential decay is observed, the logarithm of the amount
remaining is linearly related to time. This relationship allows
for a simple method of fitting exponential decay to experimental
data using least-squares, linear regression on the transformed
data. We have previously presented evidence that this method
of optimizing the fit of the exponential decay model is typically
less desirable than fitting the model in the natural scale using
least-squares, nonlinear regression (1). However, in a number
of cases, the nonlinear exponential approach is characterized
by subtle, or sometimes more dramatic, systematic deviations
from experimental data. This is especially apparent at low
residues around the DT90 (predicted time when 90% degradation
has occurred). DT90 values are important because they are often
used to make regulatory decisions (1).

Here, we compare the fit of three additional models to that
of the exponential model using nonlinear least-squares regres-
sion. We have selected these additional models for consideration
based on their relative simplicity (three and four parameters)
and their potential to better fit soil decay data sets that appear
to be biphasic or multiphasic in nature. A four-parameter
biexponential model (2), a three-parameter Monod equation
incorporating microbe growth (3), and a three-parameter shift-
log model (4, 5) were selected for this investigation. We have
not evaluated true compartment models here, as this approach
typically requires experimental data quantifying partitioning into
the compartments to produce meaningful results. Without this
type of information, dramatically different parameter estimates
can result in an equally good fit to some data sets. Also, we
have also not evaluated a zero-order model here due to its
simplicity and its obvious fit where appropriate (straight line
in the natural scale).

Zero-order, exponential (pseudo-first-order), biexponential,
Monod growth, and shift-log models have each been used to
describe the degradation of pest control substances in soil, and
putative mechanisms have been proposed to explain why these
models may fit observed decay patterns. Zero-order decay may
exist when the concentration of substrate is sufficient to saturate
the metabolic capacity of microbes responsible for decomposing
that particular substrate. The rate of decay is therefore mediated
by the maximum capacity of these microbes and is independent
of substrate concentration. Exponential decay may represent
situations where the metabolic capacity of microbes responsible
for degrading a particular substrate is in excess as compared to
the substrate concentration. In this situation, the enzymes
responsible for decay are only limited by their frequency of
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interaction with the substrate. Under such conditions, Michae-
lis-Menten enzyme kinetics predict a first-order decay pattern
(6). The biexponential model allows for two distinct compart-
ments to exist in soil where the substrate is immediately and
statically sequestered into each compartment and where two
different exponential decay rates operate. The Monod growth
model also assumes Michaelis-Menten enzyme kinetics but
incorporates the population growth of microbial decomposers.

Finally, a mechanism for the shift-log model has been postulated
based on spatial variability within soils (4).

Our approach was to compare the empirical fit of the curve-
linear models described above for their ability to conform to
experimental data from soil degradation experiments. Previously,
we compared a subset of analogous models using an abbreviated
data set and used the coefficient of determination as the only
measure for goodness of fit (5). Here, we used an expanded

Figure 1. Fit of exponential (dotted line), shift-log (dashed line), biexponential (solid line), and Monod (dot−dash line) regression lines to soil degradation
data sets. Plots are ordered subjectively based on the similarity of the models.
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array of data sets, and our primary diagnostic tools for
comparing the models were composite residual plots constructed
on normalized axes (1). This tool highlights typical patterns of
systematic deviations from the models and the general error
structure. We also expanded this analysis by looking at time
residuals to assess deviations between observations and predic-
tions around point estimates of decay (e.g., half-lives).

MATERIALS AND METHODS

Sixty-one data sets were identified where results were amenable to
analysis (1). Data were normalized to the initial observed residue
(100%). First-order (% remaining) S0 × eslope×time), biexponential (%
remaining) S1 × eslope1×time + S2 × eslope2×time ), Monod growth [%
remaining) (P × S0 × eP×time)/(P + Q × S0 - Q × S0 × eP×time)],
and shift-log{log10(% remaining)) slope× [log10(time+ k)] + S}
models were fit to each data set using nonlinear, least-squares regression
(7). The form of the shift-log model was chosen to facilitate
convergence of the nonlinear regression routine. Nonlinear regression
is an iterative process, and a solution is therefore not guaranteed. Plots
for each data set were prepared showing the fit of each model (Figure
1).

For each model, composite plots were constructed where all residuals
(deviations from the model) were plotted on normalized axes. They-axis
was normalized to the percent remaining substrate based on the initial
observation, as described earlier. Thex-axis (time scale) was normalized
to the observed percent remaining based on the initial observation and,
in a second set of plots, was normalized to the predicted percent
remaining based on the predictedy-intercept (predicted amount of
substrate at the zero time point) 100%). The percent remaining was
also rescaled in the second set of plots based on the intercepts estimated
by each model. Residuals were calculated by subtracting the predicted
percent remaining from the observed percent remaining.

A third set of plots was constructed for each model to illustrate the
pattern of time residuals. The predicted time was subtracted from the
observed time for each data point and divided by the observed time.
This value was multiplied by 100 to generate time residuals as a
percentage of the observed value. This scaling allowed degradation
patterns of greatly varying duration to be normalized. The time residuals
were plotted against predicted percent decay to allow predicted point
estimates of decay, such as DT50 (time until 50% decay) and DT90

values, to be compared to observed data.Figure 2 illustrates how the
three composite residual plots were constructed. Box and whisker plots
were also generated to help in the comparison among models.

RESULTS AND DISCUSSION

Models. Four models were chosen for comparison based on
their relative simplicity (2-4 parameters) and their ability to
fit experimental data from soil degradation experiments. Rela-
tively simple models were chosen due to the limited number of
data points that typically characterize these types of data sets
(Figure 1). The first-order model was included because it is
one of the most commonly used models for fitting soil
degradation data. The four-parameter biexponential model and
three-parameter shift-log and Monod growth models were
chosen because they are relatively simple and because these
models estimate the intercept. A three-parameter biexponential
model and a two-parameter shift-log model are available that
each force the estimated line through the initial data point at
100% remaining (5). For these models, a valid analysis requires
omitting the initial data point from the regression, since this
data point is assigned a value of 100% and the line is forced
through this point. Removing this point reduces the degrees of
freedom for the analysis and is thus equivalent to adding a
parameter in terms of the power of the analysis. For this reason,
the simplified models offer no advantage unless the data are
normalized to an estimate of the initial concentration that is
independent of the initial observed concentration. This may be

possible when a theoretical initial concentration is used for
normalizing the data and where the observed initial observation
at time zero is not set to 100% remaining.

Although each of these models has a putative mechanistic
explanation for its fit to soil decay data sets, we chose these
models based on their empirical fit to the data sets. Many
mechanisms may contribute to the fit of a particular model to
soil decay data, and a good fit by one of the models does not
alone substantiate a particular mechanism as being responsible
for the observed decay. This is evident inFigure 1 where
multiple models may fit a particular data set very well.

Model Convergence.While the convergence routine used
here (S-Plus,7) was successful for all models and data sets, we
experienced convergence problems for the biexponential, Monod
growth, and shift-log models for some data sets using other
nonlinear routines (e.g., SAS PROC NLIN,8). These problems
were typically associated with data sets that were well-fit by
zero-order (linear in natural scale) or first-order models. These

Figure 2. Mechanics of constructing composite residual plots. Panel 1
depicts the fit of nonlinear first-order model to the BHC data set, with key
attributes for data point “E” noted. Panels 2−4 illustrate how the attributes
depicted in panel 1 are used to construct the three different types of
composite residual plots used in this paper.
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convergence problems seem to be of little practical consequence
because they were typically associated with data sets that are
well-fit by simpler models (zero-order or first-order).

Model Fit. Figure 1 illustrates the fit of each model to each
of the data sets. In general, all four of the models investigated

here fit the data sets well. As noted earlier (1), the nonlinear,
first-order model generally fits these data sets well but often
appears to slightly underestimate small residues.

Composite residual plots were prepared on a normalized scale
allowing the fit of each model to be evaluated across all 61 of

Figure 3. Residuals (observed − predicted) for indicated models plotted against the observed percent remaining.

Figure 4. Residuals (observed − predicted) for indicated models (adjusted for the predicted intercept) plotted against the predicted percent remaining.
Insets depict a scatter plot of the residuals, and the larger plots summarize the data into categories as indicated. The boxes encompass the middle 50%
of the data (with the median dividing the box). Whiskers go to largest and smallest points within 1.5 times the interquartile range from box boundaries,
and outliers are displayed as points beyond the whiskers.
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the data sets examined here (Figures 3-5).Figure 3 depicts
the residuals of the percent-remaining data vs decay, expressed
as percent remaining values scaled to the initial data point (time
) 0). This scaling results in a horizontal distribution of data
points across thex-axis that is identical in each of the plots.
Data points above the horizontal zero line indicate that the model
predicts residues below those observed, and data points under
the line indicate that the model predicts residues above those
observed.

Figure 3 illustrates that each of the models appears to fit
most of the data sets well and that only minor systematic
deviations appear to be present for these models. There do not
seem to be any obvious patterns in the error structure that
indicate heteroscedasticity with the exception of the shift-log
model that appears to be less variable when residues are small.
This may be due to optimization of the shift-log model in the
logarithmic scale, which weights small residues more heavily
than would be the case in the natural scale. The four-parameter
biexponential model (Figure 3C) and Monod model (Figure
3D) generally appear to better fit the data as compared to the
two-parameter nonlinear, first-order model (Figure 3A) or the
three-parameter shift-log model (Figure 3B). This is indicated
by the reduced spread of residuals around the horizontal zero
line in Figure 3C,D, as compared toFigure 3A,B. The shift-
log model appears to fit smaller residues more closely as
compared to the first-order model. This may be partially due to
the estimation of the shift-log model in a logarithmic scale with
respect to residue, since this transformation weights smaller
residues more heavily than the other models.

While Figure 3 is quite useful for comparing the fit of these
models due to the equal horizontal distribution of data points,
point estimates of decay such as DT50 or DT90 values are often
used to estimate persistence. Normally, these values are
calculated based on the intercept estimated by each model and
not the value at the zero time point. For this reason, the residuals
were also plotted vs the predicted percent remaining residue
(Figure 4, insets). In addition, the residuals were rescaled to
the intercept predicted by each model. Plotting residuals vs the
predicted percent remaining allows for an assessment of model
performance around given point estimate of decay that may be
of interest. For example, persistence is often expressed as a half-
life for decay that follows a first-order degradation pattern or
as DT50 or DT90 values for this and other models. Accurate
DT90 estimates are important because they are often used to
make regulatory decisions relative to environmental persistence.
Box and whisker plots were used to summarize the data and
aid in comparing the models (Figure 4).

The slight underestimation of residues around the DT90 is
readily apparent for the first-order model inFigure 4A. The
shift-log and biexponential models both appear to estimate small
residues very well (Figure 4B,C). However, the shift-log model
may slightly underestimate residues around the DT50. The
biexponential model appears to fit most data sets very well
across the entire range of residues.

Because of the varying slope of the decay curves as
degradation progresses for all four models investigated here,
the effect of mis-specifying residues around different point
estimates of decay (e.g., half-lives) has a varying effect on the

Figure 5. Time (horizontal) residuals for indicated models plotted against the predicted percent remaining. Insets depict a scatter plot of the residuals,
and the larger plots summarize the data into categories as indicated. The boxes encompass the middle 50% of the data (with the median dividing the
box). Whiskers go to largest and smallest points within 1.5 times the interquartile range from box boundaries, and outliers are displayed as points beyond
the whiskers.
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magnitude of mis-specification of these point estimates. For
example, the same magnitude of error specifying residue on a
flat portion of a decay curve, which may occur when residues
are small, will more greatly affect mis-specification of a DT90

than will the same magnitude of error on a steep portion of the
curve that may occur around the DT50. This is a result of larger
changes in residue that occur over shorter periods of time earlier
in the decay process. For this reason, a third set of plots (Figure
5) were constructed showing the deviation between observed
data points and predicted time (horizontal residuals). These time
residuals are plotted vs predicted percent remaining to allow
assessment around point estimates of decay as predicted by the
models. Plots illustrate the percent deviation between the point
estimates of decay and the observed data. Again, box and
whisker plots were used to facilitate model comparisons.

All models show the greatest spread of time residuals early
in the decay process (Figure 5, insets). The time residuals are
expressed as a percentage of the observed time to allow many
data sets with greatly varying time scales to be combined in
one plot. This representation of the time residuals can also result
in small absolute time residuals being expressed as a large
percent difference early in the decay process. For example, a
point estimate that deviates from an observation by 1 day would
represent 100% time residual for an observation made at 1 day
but would represent a 10% time residual for an observation made
at 10 days (also time residuals cannot be calculated for time
zero). This is of little consequence since, in practice, most point
estimates of decay are reported at or above 50% decay (gDT50).
For this reason, we focus our discussion on the middle and
second halves of the time residual plots (four rightmost boxes
in each plot inFigure 5).

The first-order model may slightly overestimate point esti-
mates around the DT50 in some cases but certainly seems to
consistently underestimate point estimates around the DT90

(Figure 5A). The Monod and biexponential models do not
appear to display systematic bias in estimating persistence
around the DT50 (Figure 5C,D) while the shift-log model
appears to often slightly underestimate DT50 values (Figure 5B).
However, the biexponential and Monod models may display a
small bias in underestimating small residues.

In conclusion, the nonlinear, first-order model, shift-log
model, and biexponential model all appear to fit the pattern of
degradation of pest control substances in soil very well. On the
basis of the three different composite residual plots, the first-
order model often appears to slightly underestimate small
residues, and this may result in systematic underestimation of
DT90 values (Figures 3A,4A, and5A). In general, the more
complex models appear to better fit a wider array of data sets.

Because of the limited number of data points in many
individual data sets (Figure 1), overparametrization of models
is a concern for these types of experiments. However, use of
models that show systematic deviations from many data sets
can result in biased conclusions. Use of first-order kinetics to
model the decay of pest control substances in soil is widely
accepted, easy to interpret, expected by many regulatory

agencies, and required for generating rate constants for input
into common environmental computer models. The first-order
model also has only two parameters, making it suitable for very
small data sets. However, we have illustrated here that the shift-
log, biexponential, and Monod models often conform to data
sets better than the first-order model (Figures 3-5). Each of
the later models appears to offer similar abilities to estimate
DT50 and DT90 values with limited error and with little bias
but at the cost of adding one or two parameters to the model.

In the absence of knowledge concerning the mechanism of
decay, the decision as to what model is appropriate for a given
data set should be dependent on model fit, lack of bias,
simplicity, regulatory requirements, and need to provide rate
constants for environmental models. We have illustrated a
common bias for the nonlinear, first-order model, and this bias
can be evaluated for a specific data set to determine if use of a
more complex model, such as one of those described here, is
warranted. A knowledge of the patterns of bias typically
exhibited by each model across many data sets may be useful
for selecting models with reduced bias for use with individual
data sets.
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